

Ondřej Caletka | SEE 13 | 7 April 2025

IPv6-mostly on **OpenWRT** Running NAT64 / PREF64 / DNS64 / DHCP108 at home

IPv6-mostly?

IPv6? You mean Dual Stack!

- IPv4-only and IPv6-only resources directly accessible
- IPv6 preferred for dual-stack resources
- Problems with IPv6 masked by Happy Eyeballs algorithm
- But it does not address IPv4 scarcity

Ondřej Caletka | SEE 13 | 7 April 2025

Dual Stack

NAT64 allows IPv6-only networks

- IPv6 accessible natively
- IPv4 is translated into part of IPv6 address space
- Together with DNS64, everything seems to be accessible over IPv6
- But sometimes you run into...
 - IPv4 literals
 - Legacy software opening IPv4-only sockets
 - Dual-stack servers with broken IPv6

464XLAT closes the gap

- CLAT translator inside the host
- Translates residual IPv4 traffic to IPv6
- Translated IPv6 traffic get translated to IPv4 by NAT64 = PLAT
- Applications see good old dual-stack

Ondřej Caletka | SEE 13 | 7 April 2025

*) some statements are simplified

Phased IPv6 transition

Ondřej Caletka | SEE 13 | 7 April 2025

7

Doing it for real

What and why?

- You have IPv4 and IPv6 at home
- Everything is dual-stack
- You would like to gradually get rid of IPv4
- You want to see things break so you can help fixing them
 - **spoiler alert**: you will not see any big breakages

Prerequisites

- A dual-stack upstream connectivity with delegated IPv6 space
- A CPE capable of running OpenWRT, at least v23.05.2
- Hardware tips:

Turris routers run TurrisOS which is based on somewhat older OpenWRT

Ondřej Caletka | SEE 13 | 7 April 2025

GL-iNet routers come with firmware based on OpenWRT, can be easily replaced with vanilla OpenWRT release

What we are going to do

- Add an extra IPv6-only network
- Set up NAT64 using Jool
- Configure native PREF64 support in OpenWRT
- Configure DHCP server to offer "IPv6-only preferred"
- Set up DNS64 using Public DNS/Unbound/Knot Resolver
- Use Ansible to automate everything

IPv6-only Network

IPv6-only network

- Let's keep the default network lan dual-stack
- We create another network lan6 without any IPv4 config
- We allocate a /60 IPv6 to that interface
 - first /64 would be used for directly connected devices
 - the rest will be available via DHCP-PD for **downstream routers**

```
config device
    option type 'bridge'
    option name 'br-lan6'
    option bridge_empty '1'
    list ports 'lan2'
```

config interface 'lan6' option proto 'static' option device 'br-lan6' option ip6assign '60' option ip6hint '60'

Ondřej Caletka | SEE 13 | 7 April 2025

config dhcp 'lan6' option interface 'lan6' option ignore '1' option ra 'server' option dhcpv6 'server'

config zone option name 'lan'

...

list network 'lan6'

What we have now

- Dual-stack network: business as usual
- IPv6-only network: no IPv4 support
 - ideal future Internet
 - a lot of things work already
 - but a lot of things also **do not work**

Ondřej Caletka | SEE 13 | 7 April 2025

IPv6-only

IPv6-mostly

PSK: tutorial

14

Pretending everything is reachable over IPv6

NAT64

NAT64

- A packet translator between IPv6 and IPv4
- Stateless or stateful
 - stateless is mostly useful for providing IPv6 services to IPv4-only clients
 - stateful is mostly useful to enable **IPv6-only clients** to reach **IPv4 services**

Uses Well-Known or Network-Specific Prefix

No private IPv4 addresses allowed in Well-Known Prefix

JOO

- A Linux kernel-space implementation of NAT64
- Available in OpenWRT
- Not integrated into OpenWRT configuration system
- Stealing packets in the PREROUTING, injecting translated packets into **POSTROUTING**
 - Hard to enforce firewall rules
 - Translation not available for locally generated traffic -

Ondřej Caletka | SEE 13 | 7 April 2025

17

Jool in a network namespace

- Use veth pair to interconnect main and jool namespace
- No issues with firewall/locally generated content

jool namespace

Let's set it up

Necessary packages	<pre>#!/bin/sh ip link ad</pre>
• kmod-veth	ip netns a ip link se
• ip-full	ip netns e
• kmod-jool-netfilter	Sy
jool-tools-netfilter	sy sy
	sy
	ip
	קר יה
	ip in
	ip
	mo
	jo
	jo
	jo
	jo

```
ł
```

```
ld jool type veth peer openwrt
  dd jool
  t dev openwrt netns jool
  exec jool sh <<EOF
  sctl -w net.ipv4.conf.all.forwarding=1
  sctl -w net.ipv6.conf.all.forwarding=1
  sctl -w net.ipv6.conf.openwrt.accept_ra=2
  sctl -w net.ipv4.ip_local_port_range="32768 32999"
   link set dev lo up
   link set dev openwrt up
   addr add dev openwrt 192.168.164.2/24
   addr add dev openwrt fe80::64
   route add default via 192.168.164.1
  dprobe jool
  ol instance add --netfilter --pool6 64:ff9b::/96
  ol global update lowest-ipv6-mtu 1500
  ol pool4 add 192.168.164.2 33000-65535 --tcp
  ol pool4 add 192.168.164.2 33000-65535 --udp
jool pool4 add 192.168.164.2 33000-65535 --icmp
```


OpenWRT side

- We use IPv4 subnet 192.168.164.1/24
- We allocate one IPv6 /64 with SLAAC
- We route NAT64 prefix to fe80::64
- We put this interface to LAN firewall zone

```
config dhcp 'jool'
    option interface 'jool'
    option ra 'server'
    option ra_default '2'
    option ignore '1'
```



```
config interface 'jool'
  option device 'jool'
  option proto 'static'
  option ip6assign '64'
  option ip6hint '64'
   list ipaddr '192.168.164.1/24'
config route6 'nat64'
  option interface 'jool'
   option target '64:ff9b::/96'
  option gateway 'fe80::64'
```


Testing it

- ping/traceroute 64:ff9b::<your favourite IPv4>
- Make sure it works also from the connected devices
 - otherwise it might be a routing/firewall issue

Ondřej Caletka | SEE 13 | 7 April 2025

21

PREF64 Letting everybody know that NAT64 is in place

PREF64

- prefix the network is using
- Hosts can therefore send traffic there instead of native IPv4
 - Usually by means of CLAT Customer-side translator between IPv4 and IPv6
- PREF64 is a new feature of OpenWRT v23.05.0

config dhcp 'lan6' option interface 'lan6' option ra_pref64 '64:ff9b::/96'

Ondřej Caletka | SEE 13 | 7 April 2025

Option in Router Advertisement messages carrying the NAT64

What we have now

- Dual-stack network: business as usual
- IPv6-only network:
 - works **normally** with Android (IPv4 goes via CLAT)
 - works normally with iOS/macOS (IPv4 goes via CLAT, except for Safari et al)
 - works **barely** with other OSs (no CLAT, no PREF64 support, IPv4 is dropped)

IPv6-only

Ondřej Caletka | SEE 13 | 7 April 2025

PSK: tutorial

IPv6-mostly

IPv6-only-preferred DHCP option to turn off IPv4

IPv6-only Preferred option of DHCP

Using DHCP to turn IPv4 off

Ondřej Caletka | SEE 13 | 7 April 2025

(RFC 8925)

Setting up DHCP Option 108

- No special treatment needed in the DHCP server
- We just need to encode the value ourselves
 - 30 minutes = 1800 seconds = 0x708 seconds

config dhcp 'lan'

...

Ondřej Caletka | SEE 13 | 7 April 2025

option interface 'lan' list dhcp_option '108,0:0:7:8'

28

What we have now

- IPv6-only network: no change
- Dual-stack IPv6-mostly network:
 - **no change** for Windows, Linux _
 - same as IPv6-only for Android, iOS and macOS

Ondřej Caletka | SEE 13 | 7 April 2025

IPv6-only

PSK: tutorial

IPv6-mostly

PSK: tutorial

DNS64 Faking DNS with good intentions

DNS64

- A easy trick to make legacy hosts use NAT64
- Native IPv6 is unaffected
- Queries for IPv4-only resources receive a synthesised IPv6 answer pointing to NAT64 space
- A legacy host thinks every domain name has an IPv6 address
- Works pretty well, but has some issues:
 - **IPv4** literals
 - **DNSSEC** validation
 - Legacy IPv4-only socket API

Ondřej Caletka | SEE 13 | 7 April 2025

31

Do we really need DNS64?

- Eventually, it will likely be superseded by PREF64 and in-host translation
- Android can work well with just NAT64/PREF64
- - good for IPv6-only network
 - **not so good** for an IPv6-mostly network, where legacy OSs run dual-stack

Ondřej Caletka | SEE 13 | 7 April 2025

Native iOS/macOS apps require DNS64 to access IPv4 resources

DNS64 makes legacy OSs use more NAT64 in place of native IPv4

The easy option: Public DNS64

- Google Public DNS64
- Cloudflare Public DNS64
- Only if you use Well-Known Prefix for NAT64

config dhcp 'lan' option interface 'lan' list dns '2001:4860:4860::64' list dns '2606:4700:4700::64' ...

Easy solution on TurrisOS

TurrisOS uses Knot DNS Resolver by default Knot DNS Resolver has decent support for DNS64

modules = { 'dns64', 'view' }

```
-- dns64.config({ prefix = '64:ff9b:face:b00c::' })
```

```
-- Disable dns64 for IPv4 clients
view:addr('0.0.0.0/0', policy.all(policy.FLAGS('DNS64_DISABLE')))
```

-- Reenable it for a specific prefix:

Ondřej Caletka | SEE 13 | 7 April 2025


```
view:addr('127.0.0.0/8', policy.all(policy.FLAGS(nil, 'DNS64_DISABLE')))
```

34

Replacing dnsmasq with Unbound

- We need to turn off the DNS re keeping the DHCP function
- Turning DNS off will stop offering DNS option in DHCP
- Some people find it really bad if DHCP hostnames do not appear in local DNS

```
config dnsmasq
    option port '0'
...
config dhcp 'lan'
    list dhcp_option '6,0.0.0.0'
...
```

Ondřej Caletka | SEE 13 | 7 April 2025

We need to turn off the DNS resolver function of dnsmasq while

ng DNS option in DHCP if DHCP hostnames do not

```
config unbound 'ub_main'
...
option dns64 '1'
option dns64_prefix '64:ff9b::/96'
...
option validator '1'
list iface_lan 'lan'
list iface_lan 'lan6'
```

Unbound Recursive DNS server with UCI

What we have now

- IPv6-only network:
 - works without issues on Android, iOS and macOS -
 - works with slight issues on other OSs
- Dual-stack IPv6-mostly network:
 - works exactly like IPv6-only network for Android, iOS and macOS
 - some IPv4 traffic goes via **DNS64** instead of native IPv4 for Windows, Linux

Ondřej Caletka | SEE 13 | 7 April 2025

IPv6-only

PSK: tutorial

IPv6-mostly

PSK: tutorial

Using Ansible

Automating the setup

Pitfalls

- No Python in OpenWRT by default
- No native Ansible support for UCI configuration system

Both are resolved with role gekmihesg.openwrt

Ondřej Caletka | SEE 13 | 7 April 2025

fault JCI configuration system

My roles collection

- openwrt-lan6
- openwrt-jool
- openwrt-pref64
- openwrt-dhcp108
- openwrt-unbound

Feel free to use and share: https://github.com/oskar456/ansible-openwrt-ipv6-mostly

Summary

More support for IPv6-only planned

- Windows promised to implement generic CLAT for Windows 11
 - no precise timeline yet
- Patches for NetworkManager are being written
 - using an eBPF CLAT translator
 - support for DHCP Option 108 is finished already

Ondřej Caletka | SEE 13 | 7 April 2025

41

IPv6-mostly efficiency

Ondřej Caletka @Oskar456@mastodon.social

#ripe88 network quiz: There are now 527 devices connected to the main meeting network. How many active DHCP leases are there? (Lease time is 4000 seconds.)

Obnov	it · 76 lidí · Uzavřeno		
63%	More than 550		1
17%	100 - 550		
7%	50 - 100	CORRE	ECT
13%	Less than 50		

Ondřej Caletka | SEE 13 | 7 April 2025

		шах	arg	current
-	Total	555	107	
-	ripemtg	527	103	52
-	ripemtg-legacy-88	18	8.50	18
-	ripemtg-v6onlyexp	7	3.50	!
_	ripemtg-legacy-2.4-88	6	3.10	ļ

mav

ava v

avg current max mtg-legacy 31 31 14 mtg-public 85 16 85

wifi-mgmt	45	42	45
Total	161	61	161

CUIFFOR

IPv6-mostly is just temporary

- Dual-stack was supposed to be just temporary
- Yet we got used to the safety net of IPv4
- IPv6-mostly is the way to finally migrate from dual-stack
- You can already save 70+ percent of IPv4 addresses
- With Windows and Linux support for IPv6-only operation, IPv4 could be safely undeployed

Questions

Ondrej.Caletka@ripe.net @ripencc

